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ABSTRACT We show that the bilinear Hilbert transform
defined by

Hfg(x) 5 p.v. E f(x 2 y)g(x 1 y)
dy
y

maps Lp 3 Lq into Lr for 1 < p, q < `, 1yp 1 1yq 5 1yr, and
2y3 < r < `.

Section 1. Introduction

We continue the investigation begun in ref. 1 concerning the
bilinear Hilbert transform defined by

Hafg~x! :5 lim
«30

E
uyu.«

f~x 2 ay!g~x 2 y!
dy
y

, a Þ 1.

This singular integration is initially defined only for certain
functions f and g, for instance those in the Schwartz class on
R. But Ha can be extended to a bounded operator on certain
Lp classes, as ref. 1 showed. We extend the theory of that paper
with this result:

THEOREM 1.1. For any a Þ 1, Ha extends to a bounded
operator on Lp1 3 Lp2 into Lp3, provided 1 , p1, p2 # `, 1yp3 5
1yp1 1 1yp2, and 2y3 , p3 , `.

A special instance of this theorem was conjectured by A. P.
Calderón in connection with ref. 2, namely L2 3 L` into L2 or,
by duality, L2 3 L2 into L1. A special feature of the result is
that the index p3 for the image space need only be bigger than
2y3. We do not know that this is necessary for the theorem,
although it is necessary for our proof.

The proof refines the method in ref. 1, with a more effective
organization of the elements of the proof and an extension of
certain almost orthogonality results in that paper to Lp func-
tions for 1 , p , 2.

Section 2. The Model Sums

As in ref. 1, the essence of the matter concerns an analysis of
a analogue of Ha that is more suited to the methods we employ.
In particular, we utilize combinatorial features of the space–
frequency plane.

Let D be a dyadic grid in R. Call I 3 v [ D 3 D a tile if
uIuzuvu 5 1. The interval v is a union of four dyadic subintervals
of equal length, v1, v2, v3, and v4, which we list in ascending
order. Thus, ji , jj for all 1 # i , j # 4 and jj [ vj. We adopt
the notation t 5 It 3 vt and tj 5 It 3 vtj for j 5 1, 2, 3. Fix
a Schwartz function f with f̂ supported on [21y8, 1y8]. Set for
all tiles t, and j 5 1, 2, 3,

ftj~x! 5
e22pic~vtj!x

ÎuItu
fSx 2 c~It!

uItu
D ,

where c(J) denotes the center of the interval J.
Then our model of the bilinear Hilbert transform is any of

the following sums

MS f1 f2~x! 5 O
t[S

uItu21y2^ f1, wts~1!&^ f2, wts~2!&wts~3!~x!,

in which S is a finite subset of Sall, the set of all tiles and s :
{1, 2, 3}3 {1, 2, 3} is any one-to-one map. Including this map
s emphasizes the symmetry of these model sums under duality.
We comment that the sum above makes sense only a priori for
finite sums. We provide estimates for MS that are independent
of the number of elements in S, and hence the sum can be
extended to Sall. It is in this sense that several statements below
should be interpreted.

The analogue of Theorem 1.1 is

THEOREM 2.1. For any choice of s, MSall
extends to a

bounded operator on Lp1 3 Lp2 into Lp3, provided the indices pi

are as in the previous theorem.

Indeed, our proof supplies the additional information that the
sum over tiles t is unconditionally convergent. And for this to
hold an example shows that the inequality p3 $ 2y3 is
necessary.

We shall take the prior result from ref. 1 for granted, namely
that MSall

is a bounded operator on Lp1 3 Lp2 3 Lp3 provided
2 , p1, p2, p3y(p3 2 1) , `. Then, taking duality and
interpolation into account, one can see that it suffices to prove
Theorem 2.1 in the case that 1 , p1, p2 , 2 and 2y3 , p3 ,
1. This we shall do, assuming that the map s : {1, 2, 3}3 {1,
2, 3} is the identity.

Indeed, this last case follows from a more precise statement
that fully exploits the symmetry in the definition of the model
sums.

LEMMA 2.2. Let 1 , p1, p2, p3 , 2 satisfy 1 , 1yp1 1 1yp2
1 1yp3 , 2. Let fi [ Lpi be of norm one and let

E 5 {x[RuMpi
~Mfi!~x! . 1}.

Then for an absolute constant C

O
s[SE

uIsu21y2 P
i51

3

u^ fi, wsi&u # C,

where SE 5 {s [ Sall u Is ÷ E}, Mf denotes the Hardy–Littlewood
maximal function, and Mrf 5 (Mu f ur)1yr.

Let us indicate how this proves Theorem 2.1 for 1 , p1, p2
, 2 and 1 , 1yp1 1 1yp2 , 3y2. There is a simple reduction.
By linearity and scaling invariance, the inequality
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holding for all i f1ip1
5 i f2ip2

5 1 will prove that MSall
maps into

the appropriate weak Lp3 space. Then Marcinceiwcz interpo-
lation proves the theorem.

Fix f1 and f2 of norms one in their respective Lpi spaces. We
use the set

E0 :5 ø
i51

2
$Mpi

~Mfi! . 1%

to split up Sall and the set whose measure we are to estimate.
Let Sin :5 {s [ Sall u Is , E0}, Sout :5 Sall 2 Sin, and define
Ein :5 {MSin

f1 f2 . 1} and similarly Eout :5 {MSout
f1 f2 . 1}.

It suffices to bound the measures of these last two sets by
constants.

The essential term, uEoutu, is controlled by Lemma 2.2.
Indeed, we may assume that uEoutu . 1, for otherwise there is
nothing to prove. Then choose p3 with 1 , 1yp1 1 1yp2 1 1yp3

, 2 and we take the third function to be the indicator of Eout,
normalized in Lp3; that is, we take f3(x) :5 uEoutu21yp3 xEout

(x).
Observe that this function is strictly less than one. Therefore,
Lemma 2.2 gives us the desired result,

uEoutu121yp3 # ^MSout
f1 f2, f3& # C.

The estimate of Ein begins by defining

E1 5 E0 ø ø
J[D
J,E

4J.

This set has measure uE1u # 5uE0u # C9, and we shall not
estimate MSin

on this set. And off of this set we have

iMSin
f1 f2iL1~E1

c! # C.

This inequality is, however, of a routine nature, and so we do
not supply a proof of it here. This finishes the discussion of the
proof of Theorem 2.1 from Lemma 2.2.

Section 3. The Combinatorics of Lemma 2.2

We devote ourselves to the proof of Lemma 2.2, beginning with
issues related to the combinatorics of the collection SE, and
concluding with the issues related to almost orthogonality.
View the functions fi as fixed and set

Fti :5 u^ f, wti&u, Ft :5 uItu21y2 P
i51

3

Fti.

There is a partial order on tiles given by t , t9 if It , It9, vt .
vt9. By splitting the collection of tiles into two we can assume
that if s ,Þ t then 4uIsu # uItu.

Call a collection of tiles T a tree with top q if t , q for all t
[ T. For 1 # i # 4, call T an i-tree if in addition to T being
a tree with top q, vti ù vq for all t [ T. In this case, observe
that for s ,Þ t ,Þ q in the tree, we must have vsi . vt . vti

. vq. Thus, for j Þ i the intervals {vtj u t [ T} not only are
disjoint but are lacunary. And indeed, the Littlewood–Paley
Theory applies to the collection of functions {wtj u t [ T}.

There are comparisons to maximal functions. Observe that
for a single tile we have

uItu21y2Ftj # C0 inf
x[It

Mfj~x! # C0, t [ SE, j 5 1, 2, 3.

[3.1]

The last inequality follows from the definition of SE.
At a deeper level, we have the following for a tree. For an

i-tree T , SE with top q and j Þ i, observe that the
Littlewood–Paley inequalities imply

1
uIqu E

Iq

F O
t[T

uItu21u^ f, wtj&u2 1It
~x!G 1y2

dx # C1 inf
x[It

Mpj
fj~x!

# C2.

This inequality hold for each subtree of T, whence we conclude
that the dyadic bounded mean oscillation (BMO) norm of the
integrand above is at most C2. The BMO structure then gives
us the formally stronger assertion that

D~T, j! :5 F uIqu21 O
t[T

u^ f, wtj&u2G 1y2

# C0. [3.2]

The square functions D(T, j) are relevant here, due to the
following estimate valid for an i-tree T. By Cauchy–Schwartz,

O
t[T

Ft # uIqu sup
t[T

Fti

ÎuItu
P
jÞi

D~T, j!. [3.3]

We summarize the combinatorics of SE in the following
decomposition. Set n0 5 2 log2 C0, the constant C0 appearing
in the previous two paragraphs. The collection SE is a union
of subcollections Sni for i 5 1, 2, 3 and n $ n0 so that

D~T, j9! # 22nyp 9j, 1yp9j 5 1 2 1ypj, [3.4]

for all j-trees T , Sni, j Þ j9. Furthermore, denote by S*ni those
elements of Sni that are maximal with respect to the partial
order ‘,’. The critical property is

O
q[S *ni

uIqu # C2n~11h!, [3.5]

where 0 , h , 2 2 ¥ 1ypi.
Once this decomposition is established, the proof of Lemma

2.2 is easily accomplished. For each n $ n0 and i 5 1, 2, 3, the
collection Sni is a union of trees Tq with tops q [ S*ni. Each tree
is a union of four trees to which the estimate 3.3 applies.
Hence, the properties of Sni imply that

O
t[Sni

Ft # 22n¥i1yp 9i O
q[S *ni

uIqu # C2n~11h2¥i1yp 9i !.

But, by the choice of h and the requirements on the pi, the
exponent on n is negative. And so this estimate has a finite sum
over n $ n0.

We turn to the task of achieving this decomposition of SE.
It is inductive and best done by defining some auxiliary
collections. Assume that the Smi are defined for all m , n and
all 1 # i # 3, in such a way that for Sr 5 S\(øm,n øi Smi) we
have

u^ fi, fti&u
ÎuItu

# 22nyp 9i t [ Sr, i 5 1, 2, 3, [3.6]

and for any i-tree T , Sr, D(T, j) # 22nyp9j12, for j Þ i.
The collections Sni will be a union of four subcollections

denoted Snij for 1 # j # 4. We define S*n11 to be the set of
maximal tiles q with uIqu21y2u^ f1, fq1&u $ 22nyp9121, and take
Sn11 to consist of all tiles t so that t1 , q for some q [ S*n11.
These tiles are removed from Sr, and then Snii is defined
similarly for i 5 2, 3. After the deletion of the tiles D0 5 øi51

3

Snii, we have u^ fi, fti&u # 22nyp9i21 =uItu for all tiles t [ Sr9 5
Sr \D0. In the subsequent section we will prove that

O
q[S *nii

uIqu # Ch2n~11h!, h . 0. [3.7]

We now concentrate on 1-trees T , Sr9 for which D(T, 2) is
suitably large. This collection of trees we denote as Sn12, and
its construction has a particular purpose. Namely, the trees we
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construct should consist of nearly orthogonal functions, a
notion that we encode in the purely combinatorial terms of
assertion 3.8.

Consider tiles q such that there is a 1-tree Tq , Sr9 with top
q so that D(T, 2) $ 22nyp9211. We take Tq to be the maximal
1-tree with this property. Let q(1) be such a top, which is
maximal with respect to ,, and in addition sup{j u j [ vq} is
maximal. Remove the tiles Tq(1), and repeat this procedure to
define Tq(2) and so on. Sn12 is then ø,Tq(,) and S*n12 5 {q(,)
u , $ 1}. Observe that for any 1-tree T , Sr9\Sn12, we have D(T,
2) # 22nyp 9211. These procedures are repeated inductively to
define the Snij for all n, i, j. However, in the case of i . j, we
choose the top q to be maximal first with respect to ‘,’ and
then with respect to inf{j u j [ vq}. In the subsequent section
we will prove that the collections S*nij also satisfy inequality 3.7.

The particulars of the construction of Snij lead to this
combinatorial fact, which for specificity we state in the case of
Sn12. For q [ S*n12, denote by Tq

r the 1-tree Tq defined above,
less those tiles in it that are minimal in the partial order ‘,’.
Set Sn12

r 5 øq[S*
n12

Tq
r . Then

s, s9 [ Sn12
r , s [ Tq

r , vs2 ,Þ vs92 Þ À implies Iq ù Is9 5 À,
[3.8]

D~Tq
r , 2! $ 22nyp 92. [3.9]

The first assertion is a condition concerning the disjointness of
the trees in the space–frequency plane that will be a sufficient
condition for orthogonality in the subsequent section.

Suppose that condition 3.8 is not true. Thus Iq ù Is9 Þ À and
hence Is9 , Iq. Yet s9 [ Tq9

r for some q9 and there is an s0 [
Tq9 with s0 , s9. Hence vq , vs92 , vs01 as Tq9 is a 1-tree. But
vq9 , vs91 so that sup{j u j [ vq} . supj9{j9 [ vq9}. Hence
we have violated the construction of these 1-trees. The second
condition, 3.9, follows immediately from the observation that
for any t [ Sn12 and q [ S*n12, we have 4uItu21y2u^ f2, wt2&u #
D(Tq, 2).

Section 4. Counting the Number of Trees

We prove inequality 3.5 first in the case of S :5 Snii. The
properties that we use are that the tiles in S are disjoint and
uItu21y2u^ fi, wti&u $ b for b :5 22nyp9i. The proof requires several
devices.

Step 1. We set NS*(x) :5 ¥t[S9xIt
(x). We are to estimate the

L1 norm of NS, but it is an integer-valued function, so it suffices
to prove a weak type 1 1 « estimate for some « . 0. That is,
we prove

u$NS $ l%u # Kd,«b2p 9i2dl212«, [4.1]

for certain arbitrarily small d, « . 0. Fix such a l $ 1. Because
the intervals Iq are dyadic, there is a subcollection S9 , S so
that {NS $ l} 5 {NS9 5 l} and iNS9i` 5 l. We work with the
collection S9.

Step 2. For A . 1 to be specified we can write S9 5 S[ ø
øm51

A10
Sm for which the tiles in each Sm are widely separated

in the space variable, namely

$AIt 3 vt1ut [ Sm% are pairwise disjoint for 1 # m # A10.

While S[ is small in that

O
t[S[

uItu # Ce2AiNS1
i1.

For a proof of this inequality see the separation lemma of ref.
3. It is then clear that

u$NS9 5 l%u # Cl21e2AiNS1
i1 1 CA10l212« O

m51

A10

iNSm
i11«

11« .

We will show that for appropriate A and 0 , «, d to be chosen,
but arbitrarily small, that we have a uniform estimate on the
1 1 « norm of the counting functions of the Sm. Namely,

iNSm
i11« # Cb2p 9i2dl«y2. [4.2]

This will prove inequality 4.1.
Step 3. Orthogonality decisively enters the argument. As a

consequence of the orthogonality lemmas of ref. 1, we have for
any g [ L2 the inequality

O
t[Sm

u^g, wti&u2 # C~1 1 A21y«l!igi2
2 .

On the other hand, the following is trivially bounded by the
maximal function,

sup
t[Sm

u^g, wti&u
ÎuItu

xIt
~x!.

Hence it maps Lp into itself for all p . 1. Interpolation with
the better L2 bound then provides the bound below for all 1 ,
p , 2 and d . 0.

IF O
t[Sm

U ^g, wti&

ÎuItu
U p91d

xIt
~x!G

1
p91dI

p

# Cpd~1 1 A21y«l!igip .

This estimate can be localized, yielding a better inequality for
our purposes. For a dyadic interval J set Sm, J :5 {t [ Sm u It

, J}. Then

IF O
t[Sm, J

U ^g, wti&

ÎuItu
U p91d

xIt
~x!G

1
p91dI

p

# Cpdl«~1

1 A21y«l! inf
x[J

Mp~Mg!~x!.

This last inequality holds for all p and g. We specialize to the
case of fi and p 5 pi. Moreover, we have the information
supplied from the exclusion of tiles t with It , E. Thus,

~NSm

piy~p 9i1d!!]~x! # Cb2pil«~1 1 A21y«l!pi min$1, Mpi
~Mfi!~x!%pi,

where g] denotes the sharp maximal function. This inequality
proves inequality 4.2 by raising to the r 5 (p 9i 1 2d)ypi power,
integrating and using igir # Crig]ir.

Finally, there is the case of providing the counting function
estimate for Snij for i Þ j. But we have taken care to construct
trees that are disjoint in the sense of condition 3.8 and so they
too satisfy an orthogonality principle; see Lemma 3 of ref. 1.
The argument is then much like the one just presented.
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